ICT Research and Government Policy
Bridging the ICT Innovation Gap

Phil Robertson
Chief Operating Officer, NICTA
Outline

• ICT Innovation gap – some indicators
 – Input
 – Process
 – Output
 – Outcome

• NICTA’s role and model

• Have we got the right innovation model in Australia?
What Gap?
Indicators
Australian investment in R&D (2006/07)

- **Australia R&D expenditure: ~$21 B; 2.01% of GDP**
 - OECD average 2.26% of GDP (Australian gap ~$2.6B)
 - EU target 3% of GDP by 2010, likely to achieve 2.6%
 - Many countries invest over 3% (eg Sweden, Japan, …)
 - BERD: 59%, GOVERD: 14.5%, HERD: 26.5%

- **Australian ICT R&D expenditure: ~$2.3B (~11%)**
 - BERD: 84%, GOVERD: 5%, HERD: 11% (EU >20%)
 - We’re under-investing in ICT R&D

BERD: Business Expenditure on R&D
GOVERD: Government Expenditure on R&D
HERD: Higher education Expenditure on R&D
Collaboration

Firms collaborating on innovation with government research institutes by size, 2004-06

OECD Science, Technology and Industry Scoreboard 2009 - OECD © 2009
Collaboration

Firms collaborating on innovation with higher education institutions by size, 2004-06

<table>
<thead>
<tr>
<th>Country</th>
<th>SMEs</th>
<th>Large Firms</th>
</tr>
</thead>
<tbody>
<tr>
<td>Finland</td>
<td>30</td>
<td>40</td>
</tr>
<tr>
<td>Slovenia</td>
<td>30</td>
<td>40</td>
</tr>
<tr>
<td>Austria</td>
<td>30</td>
<td>40</td>
</tr>
<tr>
<td>Greece</td>
<td>30</td>
<td>40</td>
</tr>
<tr>
<td>Belgium</td>
<td>30</td>
<td>40</td>
</tr>
<tr>
<td>Sweden</td>
<td>30</td>
<td>40</td>
</tr>
<tr>
<td>Hungary</td>
<td>30</td>
<td>40</td>
</tr>
<tr>
<td>France</td>
<td>30</td>
<td>40</td>
</tr>
<tr>
<td>Portugal</td>
<td>30</td>
<td>40</td>
</tr>
<tr>
<td>Czech Republic</td>
<td>30</td>
<td>40</td>
</tr>
<tr>
<td>Netherlands</td>
<td>30</td>
<td>40</td>
</tr>
<tr>
<td>Ireland</td>
<td>30</td>
<td>40</td>
</tr>
<tr>
<td>Luxembourg</td>
<td>30</td>
<td>40</td>
</tr>
<tr>
<td>Estonia</td>
<td>30</td>
<td>40</td>
</tr>
<tr>
<td>Norway</td>
<td>30</td>
<td>40</td>
</tr>
<tr>
<td>Slovak Republic</td>
<td>30</td>
<td>40</td>
</tr>
<tr>
<td>Spain</td>
<td>30</td>
<td>40</td>
</tr>
<tr>
<td>Poland</td>
<td>30</td>
<td>40</td>
</tr>
<tr>
<td>Denmark</td>
<td>30</td>
<td>40</td>
</tr>
<tr>
<td>Australia (2006-07)</td>
<td>30</td>
<td>40</td>
</tr>
<tr>
<td>Turkey</td>
<td>30</td>
<td>40</td>
</tr>
<tr>
<td>United Kingdom</td>
<td>30</td>
<td>40</td>
</tr>
<tr>
<td>New Zealand (2006-07)</td>
<td>30</td>
<td>40</td>
</tr>
</tbody>
</table>
Collaboration - Firms

Firms collaborating on innovation activities by size, 2004-06

OECD Science, Technology and Industry Scoreboard 2009 - OECD © 2009
Australian patenting in US

2008 US Utility Patents

Average US patents per 1 million population 2004-2008

-10.00 -5.00 0.00 5.00 10.00 15.00 20.00 25.00 30.00

350.00 300.00 250.00 200.00 150.00 100.00 50.00 0.00 -50.00

Australia

China, People's Republic of

India

Italy

Japan

Korea, South

Netherlands

Norway

Spain

Singapore

Sweden

Taiwan

Turkey

United Kingdom

United States

Switzerland

Singapore

S. Korea

China
US patents by Australians (by org’n)

<table>
<thead>
<tr>
<th>First-Named Assignee</th>
<th>2005</th>
<th>2006</th>
<th>2007</th>
<th>2008</th>
<th>2009</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>SILVERBROOK RESEARCH PTY. LTD</td>
<td>247</td>
<td>510</td>
<td>533</td>
<td>608</td>
<td>474</td>
<td>2372</td>
</tr>
<tr>
<td>~INDIVIDUALLY OWNED PATENT</td>
<td>129</td>
<td>157</td>
<td>132</td>
<td>94</td>
<td>113</td>
<td>625</td>
</tr>
<tr>
<td>CANON KABUSHIKI KAISHA (CiSRA)</td>
<td>27</td>
<td>39</td>
<td>40</td>
<td>21</td>
<td>24</td>
<td>151</td>
</tr>
<tr>
<td>CSIRO</td>
<td>23</td>
<td>30</td>
<td>13</td>
<td>10</td>
<td>19</td>
<td>95</td>
</tr>
<tr>
<td>RESMED LIMITED, AN AUSTRALIAN COMPANY</td>
<td>21</td>
<td>27</td>
<td>17</td>
<td>10</td>
<td>19</td>
<td>94</td>
</tr>
<tr>
<td>AVAYA TECHNOLOGY CORP.</td>
<td>3</td>
<td>11</td>
<td>7</td>
<td>15</td>
<td>16</td>
<td>52</td>
</tr>
<tr>
<td>COCHLEAR LIMITED</td>
<td>1</td>
<td>5</td>
<td>10</td>
<td>12</td>
<td>16</td>
<td>44</td>
</tr>
<tr>
<td>TECHNOLOGICAL RESOURCES PTY, LTD</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>3</td>
<td>15</td>
<td>21</td>
</tr>
<tr>
<td>COMPUTER ASSOCIATES THINK, INC.</td>
<td>0</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>10</td>
<td>16</td>
</tr>
<tr>
<td>CISCO TECHNOLOGY, INC.</td>
<td>7</td>
<td>7</td>
<td>6</td>
<td>14</td>
<td>9</td>
<td>43</td>
</tr>
<tr>
<td>QUALCOMM, INC.</td>
<td>4</td>
<td>1</td>
<td>6</td>
<td>14</td>
<td>9</td>
<td>34</td>
</tr>
<tr>
<td>UNIVERSITY OF QUEENSLAND</td>
<td>6</td>
<td>11</td>
<td>8</td>
<td>8</td>
<td>8</td>
<td>41</td>
</tr>
</tbody>
</table>

Total 1221
2005 US Patents – Top 10 US Universities

<table>
<thead>
<tr>
<th>Rank</th>
<th>University</th>
</tr>
</thead>
<tbody>
<tr>
<td>390</td>
<td>University of California</td>
</tr>
<tr>
<td>136</td>
<td>Massachusetts Institute of Technology</td>
</tr>
<tr>
<td>101</td>
<td>California Institute of Technology</td>
</tr>
<tr>
<td>90</td>
<td>Stanford University **</td>
</tr>
<tr>
<td>90</td>
<td>University of Texas **</td>
</tr>
<tr>
<td>77</td>
<td>University of Wisconsin</td>
</tr>
<tr>
<td>71</td>
<td>Johns Hopkins University **</td>
</tr>
<tr>
<td>71</td>
<td>University of Michigan **</td>
</tr>
<tr>
<td>64</td>
<td>University of Florida</td>
</tr>
<tr>
<td>57</td>
<td>Columbia University</td>
</tr>
</tbody>
</table>

20 US Universities had 30 or more US patents granted in 2005
And note that software can be patented

A high proportion of these are ICT companies
ICT R&D FDI Trends

Australia's Share of ICT R&D FDI Projects

Australia’s ICT Trade Deficit

Figure 13: Australia’s ICT Trade Balance, 1998 to 2008 (AUDm)

~2% of GDP

Sources: ABS and TradeData (www.tradedata.net), CSES Analysis.
The Cost of Australia’s ICT Trade Deficit

Figure 7.3 ICT Equipment Surplus/Deficit as a Percentage of GDP, 2007 (per cent)

Source: OECD, CSES Analysis.
OECD findings on Productivity

• **Strong relationship between R&D and productivity (16 countries, ~20 yrs)**
 - 1% increase in business R&D corresponds to 0.13% increase in productivity
 - 1% increase in public R&D corresponds to 0.17% increase in productivity
 (av increase in MFP over study period = 0.8%)

• **Australian relationship #**
 - 1% increase in business R&D corresponds to a 0.11% increase in productivity
 - 1% increase in public R&D corresponds to a 0.28% increase in productivity

*Gullec & Van Pottelsberghe, From R&D to productivity growth: Do the Institutional Settings and Source of Funds Matter?, OECD 2001
Sources of Knowledge and Productivity: How Robust is the Relationship, OECD 2006*
Australian ICT sector profile

• ICT industry structure
 – 95% of all ICT companies have less than 20 staff
 – <1% of ICT companies have over 100 staff (265 companies)
 – Few multinational companies have R&D groups in Australia
 – Low SME global engagement

• ICT public sector research scale
 – University research is fragmented, with few groups achieving globally competitive critical mass
 – NICTA, CSIRO and DSTO together are a major part of ICT research in Australia
 – Few local opportunities for researcher / industry cross-flow

• Publishing and patenting
 – Publishing on par internationally
 – Global patenting ~1/3rd rate of countries with similar capabilities
 – ICT sector patenting below pro-rata
The (ICT) Innovation Gap

We’re not leveraging enough of our public sector R&D
NICTA’s role and model
About NICTA

Recruit commercial and research staff from Australian and global communities

NICTA

- National ICT Research Centre of Excellence
- Not-for-profit Company
- 5 Labs
- ~$80m pa cash and in-kind

Seven university “joint venture” partners contribute researchers and students

Advanced ICT skills

- Research for globally competitive products & services
- R&D partnerships

IP licensed to industry, including spinouts
About NICTA

• **NICTA**
 – Australia’s National Centre of Excellence in Information and Communication Technology (ICT) Research
 – The largest organisation dedicated to ICT research in Australia

• **Our role in Australia is**
 – Helping to build a sustainable, globally competitive Australian ICT sector
 – Developing advanced ICT systems to address major national priorities
 – Training ICT researchers to build national capability
NICTA’s model

- **Balance between “Lab research” and Projects**
 - ~35% / 65%
- **Projects target impact from the outset**
 - Commercial and/or national benefit
- **Support processes**
 - Research theme and project reviews
 - Commercialisation “lifecycle” and $$ support
 - IP strategies and patenting support
Examples of projects
Smart Roads

- **NSW RTA is a world pioneer in ITS**
 - SCATS used in over 140 cities
 - Reduces trip times 20%, start-stop up to 40%

- **NICTA working with RTA**
 - Improvements in throughput (>10%)
 - New sensors, traffic lights that “see”
 - New control algorithms

- **Next generation active safety**
 - Vehicle ↔ vehicle real-time cooperation
 - Vehicle ↔ infrastructure

In practice at Albion Park…
• NICTA collaboration with LIXI to achieve on-line loan applications, etc
 – Schema by LIXI
 – Processes and architectures by NICTA
• Digitalisation lead to Lending Industry Structure Change
 – Innovative aggregators are emerging
• Industry changes lead to Cost Savings
 – Savings estimate is approx $120 million savings a year
Spinouts: eg

- **OKL Inc and OKL Pty Ltd**
 - Spun-out of NICTA January 2007
 - VC investment from Neo Technology Ventures, Chrysalis Ventures, Citrix® Systems, Inc. in 2008/2009
 - Currently ~40 staff in Sydney and growing
 - Contracts with several multi-nationals (Qualcomm, Motorola, Toshiba + Ericsson)

- **On-going research Collaboration with NICTA**
 - World first proof that the operating system is implemented as specified (L4 verified)

- **Collaboration with local SME - Fluffy S**

- >900 million devices worldwide
 - Android, HTC, Toshiba, Motorola
Have we got the right Innovation Model in Australia?
Traditional Innovation “Funnel”

- Diversity
- Early stage research
- Development (proof of concept, etc)
- Business

Gating points

Market understanding

Research → IP / Technology development → Products / Services

Scale
Target Innovation Model

Diversity

Scale

Inputs from partnerships

Market/IP knowledge

Strategic IP

IP development

Market positioning

Business products / Services

Market engagement

Competitive positioning

Business relationships

IP strengthening

Research

By-products

Technology / IP development

By-products

NICTA Copyright 2010

From imagination to impact
Building competitive advantage

Collaboration and contract engagements to build partnering

Protection as a barrier to entry by others

Deep systems level know-how that is difficult to replicate

Technology / IP development
The importance of R&D Services

• Study of Cambridge region development - “Exploding the myths of UK Innovation Policy”:
 – …that university research is the key source of technology and innovation
 • It is more often “soft” R&D services companies started by scientists and engineers
 – …that VC funding is the primary financial resource for technology based start-ups
 • Most successful companies had a “soft” start, undertaking R&D contracts directly or via incubation
 – …that co-funding collaborative research is the best way to support technology development
 • Successful companies made little or no use of collaborative R&D grants

Exploding the Myths of UK Innovation Policy: How ‘Soft Companies’ and R&D contracts for Customers Drive the Growth of the Hi-Tech Economy, David Connell and Jocelyn Probert, Centre for Business Research, University of Cambridge, Jan 2010
Summary

• Invest more in ICT R&D
 – (Input indicator)

• Collaborate for greater innovation
 – (Process indicator)

• Take a strategic approach to IP
 – (Output indicator)

• Put more emphasis on R&D Services
 – (Outcome indicator)
Thank you
For further information on NICTA…
phil.robertson@nicta.com.au
www.nicta.com.au